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FOREWORD

This report is an advance copy of a paper that will appear in the
Journal of Engineering Mathematics in late 1977. The report is being
issued so the information can be disseminated before the journal

publication date.

ABSTRACT

Expressions are derived for the two-dimensional surface elevation
resulting from an oscillatory translating surface pressure distribution.
The surface elevation is given as the sum of rour terms, each of which
is associated with an improper intearal having a simple pole singularity.
Results are presented for the delta function and the uniform spatial
pressure distribution.

The mean work done on the fluid per unit time by the deita function
pressure distribution is given. Numerical results are presented for the

surface elevation resulting from the uniform pressure distribution.
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INTRODUCT ION

The current development of air cushion supported marine vehicles
has kindled a renewed interest in the analysis of water waves produced
by surface pressure distributions. Initially the primary application
was for the prediction of wavemaking drag produced by translating pres-
sure distributions having various planform shapes. More recently,
unsteady problems have been investigated in order to obtain insight
into various aspects of the dynamic performance of air cushion supported
vehicles [1], [2].*

Stoker, [3] Kaplan, [4] and Wu [5] treated the two-dimensional
problem for a harmonic, uniformly translating delta function pressure
distribution. Kaplan obtained expressions for the surface elevation
in the far field while Wu obtained asymptotic results for the velocity
potential and surface elevation in both the near and far field. Stoker
discussed the qualitative behavior of the solution, and obtained results
for the near and far field for the zero speed case.

Debnath and Ro.enblatt [6] treated the two-dimensional finite depth
problem using generalized function theory to obtain an asymptotic solution.
The same technique has been applied recently by Pramanik (7] tc the
two-layer fluid.

Lighthill [8] analyzed the qualitative nature of the three-dimensional
wave pattern produced by an unsteady translating pressure distribution.
More recently, Tayler and Van Den Driessche [9] used ray theory to obtain

qualitative results for the three-dimensional wave pattern produced by a

*References are listed on page 21.




periodic translating submerged source. The problem treated in this paper

is closely related to the translating submerged source of pulsating strength.
A useful survey and discussion of the literature on the pulsating source

has been compiled by Wehausen and Laitone [10].

This paper presents, for the first time, an entirely analytical result
for the two-dimensional surface elevation that is vaiid for the entire field.
Results are given for both a delta function and a uniform pressure distribution.
It was possible to obtain an analytical solution to the problem by directly
evaluating improper integrals arising from a Fourier spatial transform. The
integrals were evaluated by a careful examination of the singularities, algebraic
manipulation and proper choice of contour of integration. The results are given
in terms of well-known transcendental functions. The results will be extended
to three dimensions in the future, but a detailed analysis of the two-dimensional
dispersion was considered necessary to clarify the fundamental nature of the
wave field. The methodology used is equally applicable to the three-dimensional
problem.

The two-dimensional problem is treated here for an irrotational,
incompressible inviscid fluid of infinite depth using linearized potential
theory. The formulation of the problem generally follows Doctors' three
dimensional analysis [2] and also parallels Wu's [5] two-dimensional analysis.

The major departure from Doctors and Wu comes in the evaluation of the

integral forms by contour integration and the application of Cauchy's theorem.




DERIVATION OF VELOCITY POTENTIAL AND SURFACE ELEVATION

The coordinate sysem and notation are shown in Figure 1. The surface
pressure distribution p(x,t) is translating to the right with a speed c
relative to the fixed coordinate system. The surface elevation is denoted
as z(x,t). The fluid is considered to be irrotational and incompressible
so that a velocity potential ¢(x,z,t) exists. The potential obeys the

following relation:

B, o(x,2,t) = 0, 1)

vihere A, is the two-dimensional Laplacian operator. The fluid velocity
is the gradient of the potential, or

u=2ae
X
(2)
W=
where u is the x component and w is the z component of the velocity,
and the subscripts x and z represent partial differentation in each

respective direction.

The kinematic free surface boundary condition is written in linearized

form as follows:

+ cZX = lg= 0 (3)

The linearized dynamic boundary condition is:

(04 - co, +uo) , g = ~(E+ g2}, (4)




—

T pra—

where u is the Rayleigh viscosity. The temporary introduction of Rayleigh
viscosity proves to be useful in the interpretation of improper integrals

*
derived later in the paper. The combined free surface boundary condition

may be written as
2 - | X
Loge =200, *ca + g8 + yle, ~co )] 57 = (py - cp,).  (5)

One may also write the following condition for the fluid of infinite depth:

= -~ = 0O 6
0, =0, 12 g (6)

Since the case of harmonic time dependence is being ireated, one may write

for the pressure

olxaeh = i bercy (7)

where o is the radian frequency.
It is convenient to solve for the response due to a delta function

pressure distribution p(x) = 8(x). The resulting surface elevation will be

denoted z(x,t) and the velocity potential ¢(x,z,t). The response to an

“
o

arbitrary spatial pressure distribution p(x) may be obtained from ¢ and

using superposition integrals as follows:

* The fictitious Rayleigh viscosity is frequently used as a mathematical
artifice to shift pole singularities off the real axis. This enables one

to properly interpret the integration path after the fictitious viscosity

is removed. (See Wehausen and Laitone [10], p. 479). The problem could
have been formulated using the Navier-Stokes equations and modified boundary
conditions similar to Miles' treatment of the Cauchy-Poisson problem [11].

A treatment of this sort would be more satisfactory from a physical stand-
point. Either way, one obtains the same result after suppressing the viscosity.
The introduction of a weak internal damping mechanism is not uncommon in
other areas of classical physics. For example, the author in Reference [12]
has applied Voigt viscoelasticity to the problem of acoustic reflection
from a solid halfspace. The dissipative mechanism facilitated the inter-

pretation of a spatial Fourier integral form.

5




¢(x,2,t) =/ p(£) o(x-£,2,t)de

and (8)
Z(x,t)=] p(e)  z(x-g,t)dg

One may formally express the velocity potential and surface elevation
in a Fourier integral form:
sazt) = 3 [ ekzmea (9)

and

zlx,t) = %;- jr 5f(k,t)e1kxdk, (10)

where ¢' and ¢' are the transformed potential and surface elevation.
From (1) and (6), one sees that the transformed potential may be written
8 = A(k.t)el |7, (1)

As one is concerned only with the steady state response, the time
dependence of the velocity potential and surface elevation will be of
the same form as the applied pressure given in equation (7). In this
case the time differentiation indicated in the boundary conditions reduces
to multiplication by -io.

The transformed surface elevation may then be expressed as follows

from equations (3) and (11):

2 (k,t) = 1K (12)

One solves for the potential function A(k,t) by substituting (11) and
(7) into the transformed form of the combined free surface boundary condition 1

(5), giving as a result

A(k,t) = & i (ke + o) (13)
i {|klg - u2/4- (0 + ke + i u/zTr}




From (12) and (13), the transformed surface elevation is:

-iot
e (kot) = S : -Jk| (14)

tlkla = uZh fa® ke * 4 w/2)

To eliminate the absolute signs in equation (14) one may break the
integral form (10) into two regions, one along the negative real axis
and the other along the positive real axis. After some manipulation the

following result is obtained:

t(x,t) = E;ZOt [ AL +‘/,, e kX gk ] (15)
NTko) * | Opke.c
(o] o
where
Dy = (o +ke)? + 1 ulo + ke) - kg
and
D, = (o - ke)® + i ulo - ke) - kg.

EVALUATION OF INTEGRALS BY CONTOUR INTEGRAT!ON
To evaluate the integrals in equation (15) one must first determine the
nature of the singularities of the integrands. No branch point singularities
are evident, but the two denominators D] and D, each have two distinct zeros
corresponding to simple pole singularities. The second denominator may be

written as follows:

D,(k, 0,¢) = Bk - Ky) (k - Ky), (16)




where

K]=K0(2+ a=-2/1+aqa),
Ky = Ky(2+ a+2/T+a),
o 2
= g/ (4c®),
a‘-‘-ao(] +1ie€),
a0=5;—0 and
e = u/(20).

The damping is taken to be small, so e << 1.
The migrations of K] and K2 as the frequency parameter ag increases are

shown in Figure 2a. One sees that both poles remain near the real axis

for all values of o

One may write for the first denominator:

Dy (ksouc) = 2k = Ky) (k = Ky), (17)
where
Ky =K, (2-a-2A"-0),
and

K4=Ko(2-a+2vi-a).

The migration of these poles as o_ increases is shown in Figure 2b. The

(o}
poles remain near the real axis until g approaches unity, at which point
both poles begin to move away from the real axis.

The expression for the wave elevation may be simplified by substituting

(16) and (17) into (15) and applying a partial fraction expansion to each

term. The resulting expression for the surface elevation is




Tt
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-iot K
_e 4 D TxK) L,{x:Ks)
z(x,t) 2109 [ e 1 1 T+a 2 2
(18)
K K
- D Ilakg) ¢ —2 14(x,x4)],
1-a 1-a
where 2 )
e-1kx
I](x,K]) = K= K1 dk,
(o]
75 e-ikx
Iz(x,Kz) = e K2 dk,
(o]
£ 5 ikx
13(x,K3) = 0 K3 dk
(o]
and i
© 1KX
. e dk
Ta(x:Ky) = [ K- K,
J0

The problem now reduces to evaluation of the improper integrals 11,
I,, I3, and I, given in (18). At this point the artificial internal
dissipation may be eliminated by setting the Stokes viscosity coefficient
p to zero. The dissipation was introduced to determine in which quadrant
the poles K], KZ’ K3, and K4 lie. When the Stokes viscosity u is set to
zero the nondimensional frequency parameter « in equation (16) becomes
real:

a = a = &%E (19)

The poles K3 and K4 now lie on the real axis for a < 1 and K] and K2 are
real for all a. For a > 1, the complex poles K3 and K4 may be expressed

in exponential form as follows:

S




|
|
|
i
1

Ky = aKge iy

Ky = aKoe-1w s 1, (20)
where

v = tan! [zéf;] ]

The paths of integration for the improper integrals in (18) must be
reinterpreted when the artifical dissipation is eliminated. The K] and
K2 poles for all values of o and the K3 and K4 poles for « < 1 now lie
on the real axis, so the paths must be indented. Each path is idented so
that the pole lies on the same side of the integration path as it did when
dissipation was present. The expressions for the integrals may be written
as follows for the nondissipative medium:

[ -ikx

= e
Lok = o jTW{““
1

. ) e-ikx
X5 Ko = —— dk
2 2 F2 k-K2
’eikx
e1'kx
I4(X’K4) = E:‘Kz'dk,

Tg

where the paths Tys rz, I3 and T4 are now in the complex k-plane as

indicated in Figure 3.




S/™ puLTVIST 0L

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

The following symmetries exist between the integrals in equation

(21). These follow from the paths shown in Figure 3 and equation (21).

Iz(x,K) = I](x,K),
13(x,K)

(22)

I](-x,K)

and

14(X»K) Ig(-X,K),

where the asterisk denotes a complex conjugate and K is real. The symmetry
relations reduce the number of integrations from eight to two.

One starts by integrating I], as given in equation (21). The behavior
of the exponential term is exploited. One notes that for positive x the
exponential of the integrand for I] has a negative real part in the lower

half of the complex k plane. For x >0, 1] is evaluated by closing a contour 1

in the fourth quadrant as shown in Figure 4a. The pole K] is excluded from
the contour because of the indentation. After applying Cauchy's integral

theorem around the closed contour, one has

i -ikx
+
s [gﬁqgﬁ" ke
e

where the superscript plus sign denotes the solution on the positive x
axis. After some manipulation, the integral 11+ may be expressed in terms

of auxiliary exponential integrals [13] as follows:

LY (%, Ky) = glKyx) + iF(K x). (24)

11
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E One evaluates I] for x < 0 (denoted 11') in a similar fashion. The

contour is closed in the first quadrant as shown in Figure 4b. Noting that
the pole is now inside the contour, one may apply Cauchy's residue theorem,

giving

o .
-ikx ¢
- e dk . =iKyx
I.I +[ —E'-_—K]—— 2 ie i (25)
joo
After similar manipulation, the expression for I]' reduces to

-K

I,7(x.K) = g(-Kyx) + i[2me "% - f(-Kyx)], x > 0. (26)

Because of symmetry (22), the expressions for 12+ and 12' may be obtained
from (24) and (26) by substituting K, for Ky -
The second symmetry relation (22) is exploited to obtain the following

expressions for 13+ and I;" for o < 1:

1" (2,Ky) = glKgx) - 1[F(Kgx) - 2ra'%3%] (27)

and

13'(x, K3) = g(-K3x) + if(-K3x). (28)

Finally, the third symmetry relation is used to evaluate 14+ and

I,” fora < 1:
I, (x,Ky) = 9(Kgx) = i F(Kyx) (29)
and
1,7 (x,Kg) = g(=Kyx) + iLF(Kyx) - 2re1Ka%y. (30)

12
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To evaluate 13 and 14 for a > 1 the locations of the complex poles
K3 and K4 must be taken into account. From Figures 2b and 3e and equation
(20) one sees that Ky Ties in the upper half plane and K, in the lower
half plane. Both poles 1ie in the right half plane for a < 2 and in the
left half plane for o > 2.

For a < 2 the expressions for 13 and 1, given in (27), (28), (29) and
(30) apply because the poles still lie in the same quadrants as they did
for a < 1. However, the arguments of the auxiliary exponential integrals
become complex and the behavior of the residue terms changes because the
poles Ky and K, are complex. The residue terms in equations (27) and (30)
for 13+ and 14-, instead of representing unattenuated surface waves, now
have exponential attenation as one moves away from the disturbance.

For o > 2 the K3 and K4 poles both lie in the left half plane. No
residue terms occur in this case, as neither pole lies inside the integration

contour. Therefore, both 13 and 14 consist solely of auxiliary exponential

integral terms with complex arguments. Equations (27) and (30) still apply

if the residue terms are dropped in the expressions for 13+ and 14'.

MEAN WORK RATE AND RADIATION OF ENERGY INTO THE FAR FIELD
The rate at which energy is carried away from the pressure disturbance
by the free wave system is of importance because of its assoclation with the
work done by the pressure on the fluid in the near field. In the far field
the disturbance consists of four surface waves for 0 < o < 1 and two for

a > 1. The energy efflux may be written following Lamb [14], as:

fogr = 0 ¢ By (31)
n=1 L

13




where aQUT is the mean energy efflux through the boundary of a control volume
moving with the disturbance, cgn is the group velocity of the nth wave in the
moving coordinate system and En is the mean energy per unit surface area. In
equation (31) the relative group velocity is taken as positive when directed
away from the disturbance. Calculating the group velocities from the wave-

number expressions (16) and (17) gives the following:

-c /1 +aq

(= e

8 s =

-c T+a
1+ /7 + «a

‘g2
(32)

1)

-
—
R

i A

c === T
LRI S

c B e —
G4 B |

The mean energy for each wave may be expressed as follows:

= 2
En =g OgAn, (33)

where the amplitudes of the waves Ay A2, A3 and A4 are taken from (26), (27),

(30) and (18). Substituting the group velocities (32) and the energies (33)

into the work rate expression (31) gives the following:

Wour = —2-1—3 f (a), (34)
nC

14




where f(a) = f](a) + fz(a) and

1 a
f(a) 5 (1 + E)

|
INT
)
)
R
N

3 (
fz(a)

0 o @ > 1

The normalized work rate function f(a) is shown in Figure 5. One sees the
familiar resonance at o = 1. The resonance occurs because the work performed
by the pressure distribution on the fluid creates energy that cannot propagate
away from the disturbance. This follows from equation (32) where one sees
that the relative group velocities of the third and fourth waves are zero

for « = 1. The expressions for the group velocities (32) and the mean work

rate (34) are consistent with Wu's [5] results.

THE SURFACE ELEVATION FOR THE UNIFORM PRESSURE DISTRIBUTION
The surface elevation Z(x,t) due to a uniform pressure distribution was
computed from z(x,t) using the superposition integral (8). The surface
elevation caused by the delta function distribution z(x,t) was obtained from

(18), (24), (26), (22) and (27) - (30). One may write the uniform pressure

15




Py |x|<t/2
POX) =10, |x|>r2 (35)

The results are expressed in nondimensional form as follows:

s =k = (a+ib) e '°

Po/og

t

z (36)

where z' is the normalized wave elevation, a is the component in-phase with
the pressure and b is the out-of-phase component. Expressions for the in and
out-of-phase components for o < 1 are given in the Appendix. The two
components of the wave elevation are functfons of the normalized frequency

a and the Froude number

1/2

F=c/(gt)

Numerical results for F=0.7 are shown in Figures 6, 7 and 8 for three
frequencies: a=0, 0.5 and 0.95. In each figure the normalized in-phase (a)
and out-of-phase components (b) are plotted as a function of the nondimensional
distance x' = x/£. Figure 5 shows the in-phase component of the wave
elevation for the zero frequency case. (The out-of-phase component is zero).
The near field disturbance resembles the wake produced by a planing surface.
The standing wave in the far field downstream is evident. Figures 6 and 7
show the in-phase and out-of-phase components of the wave elevation for
«=0.5 and 0.95, respectively. One can see interference between the various
waves in the far field downstream for both frequencies. In addition, a Tong
wave appears upstream for «=0.95, but is not apparent for «=0.5.

To clarify the behavior of the waves in the far field, Table 1 has been
prepared. The ratio of wavelength to pressure distribution length (A/£) has

been calculated for each wave at all three frequencies using the wavenumber

16
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expressions (16) and (17). One sees from the table that the second and
fourth wave have the same wavelength and form a standing wave for a=0,
because one wave travels to the right and the other to the left. The first
and third waves have infinite wavelength, but their amplitudes are zero.
For nonzero frequencies, the length of the second wave is shorter than
the fourth. This causes the interference pattern in the downstream wake.
The third wave occurs upstream. Its amplitude is too small to appear in
Figure 6, but it is evident in Figure 7. The wave is so long at a=0.95

that only about half a cycle of the wave appears in the Figure.

TABLE 1
WAVELENGTHS IN FAR FIELD PRODUCED BY UNIFORM PRESSURE DISTRIBUTION

o A]/K AZ/K A3/£ A4/£
0 ® 3.08 ® 3.08
0.5 244 2.49 1.44 4.23
0.95 78.3 2.4 20.4 4.93

SUMMARY OF RESULTS

The steady state surface elevation is expressed in (18) as the sum of
four integral terms, each having a simple pole singularity in the complex
wavenumber plane. The location of the poles is shown in Figure 2. When
the Stokes viscosity is suppressed all the poles lie on the positive real
axis for low frequencies (a<1). At higher frequencies (a>1) only the first
two 1ie on the real axis. The integration paths are indented as shown in
Figure 3 so that the poles lie on the same side of the path as they did
wiith Stokes viscosity. Each integral term is then interpreted as a path

integral in the complex wavenumber space as indicated in equation (21).

17
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To reduce the number of integrations, three symmetry relations that follow
from the integral forms and the integration paths are introduced.

The first integral form is evaluated by selecting appropriate closed
contours for the positive and negative x- axis, as shown in Figure 4, and then
applying Cauchy's residue theorem. The integral is expressed in discontinuous
form in equations (24) and (26). The integral consists partially of
auxiliary exponential integrals which are known tabulated functions. In
addition a residue term appears on the negative x-axis or the downstream side.
This term is an exponential and it represents the familiar undamped surface
wave. The other three integrals are written from the first result using
the symmetry relations.

The surface elevation is seen to consist of exponential integral terms
contributing to the near field and exponentials appearing on only one side
of the disturbance. The exponential terms are the free waves and are
associated with the residues of each pole. For low frequencies (a < 1)
three waves appear downstream and one upstream, as has been noted by previous
investigators. [3,4,5]

At the higher frequencies two of the poles leave the real axis. The
exponential integral terms in the solution remain the same, except that their
arguments become complex instead of real. The residue terms persist until
a=2, at which point the poles leave the integration contour. For 1 < a < 2
the residue terms decay exponentially with distance and, therefore, do not
contribute to the far field solution.

The mean rate at which energy propagates away from the disturbance
was computed. The result, which agrees with Wu [5], is given in equation (34),

and is shown in Figure 5.

18




The surface elevation was calculated for a uniform pressure distribution.
This was done to eliminate the logarithmic sinqularities that appear in the
solution for the delta function distribution. Expressions for the normalized
in-phase and out-of-phase components of the surface elevation are given in the
appendix for the low frequency case. Numerical results are presented in
Figures 6, 7, and 8 for a Froude number of 0.7 and «=0, 0.5, and 0.95,
respectively. The zero frequency result («=0) shows that the water surface deforms
like that of a planing surface in the near field, while standing waves are
apparent in the far field. For the nonzero frequencies («=0.5 and 0.95) inter-
ference occurs in the waves downstream. In addition, a long wave occurs upstream
for «=0.95.

The lengths of the various waves were calculated for the three frequenc es.
The results are shown in the table. The zero frequency standing wave is shown
to consist of two downstream waves, each having the same wavelength and
traveling in opposite directions. The interference pattern in the downstream
wave pattern for nonzero frequency is caused primarily by the same two waves,
whose wavelengths now differ. A long wave appears upstream as one approaches

the critical frequency.




ACKNOWLEDGMENTS

The author wishes to thank Ms. M.D. Ochi and Mr. Z.G. Wachnik for

their support. Helpful suggestions from Prof. J.N. Newman are gratefully
acknowledged. The computer programming for the surface elevation cal-

culation was performed by Mr. R. T. Waters.

20




10.

11.

12.

14.

REFERENCES

Doctors, L.J. and Sharma, S.D., "The Wave Resistance of an
Air-Cushion Vehicle in Steady and Accelerated Motion", Journal
of Ship Research, Vol. 16, 1972, p. 248. pp 248-260.

Doctors, L.J., "The Hydrodynamic Influence on the Non-Linear
Motion of an ACV Over Waves," Proceedings of the Tenth Symposium
on Naval Hydrodynamics, Office of Naval Research, Washington,
1974 (Preprint).

Stoker, J.J., "Water Waves", Interscience Publishers, Inc.,
New York 1957.

Kaplan, P., "The Waves Generated by the Forward Motion of Oscillatory
Pressure Distributions, "Proceedings of Fifth Midwestern Conference
on Fluid Mechanics, University of Michigan, 1957, pp 316-329.

Wu, T.Y., "Water Waves Generated by the Translatory and Oscillatory
Surface Disturbance," Engineering Division, California Institute
of Technology Report No. 85-3, July 1957.

Debnath, L. and Rosenblatt, S., 'The Ultimate Approach to the
Steady State in the Generation of Waves on a Running Stream", ]
Quarterly Journal of Mechanics and Applied Mathematics, Vol. XXII
1969, pp 221-233.

Pramanik, A.K., "Waves Due to a Moving Oscillatory Surface Pressure
in a Statified Fluid", Journal of Applied Mechanics, Vol. 41, 1974,
pp 571-574.

Lighthill, M.J., "On Waves Generated in Dispersive Systems by
Travelling Forcing Effects, with Applications to the Dynamics of
Rotating Fluids," Journal of Fluid Mechanics, Vol. 27, 1967,

pp 725-752.

Tayler, A.B. and Van Den Driessche, P., "Small Amplitude Surface
Waves Due to a Moving Source," Quarterly Journal of Mechanics and
Applied Mathematics, Vol. XXVII, 1974, pp 317-345.

Wehausen, J.V. and Laitone, E.V., "Surface Waves", Encylopedia
of Physics, Vol. IX, Fluid Dynamics III, Springer-Verlag, Berlin,
1960, pp 479-495.

Miles, J.W., "The Cauchy-Poisson Problem for a Viscous Liquid",
Journal of Fluid Mechanics Vol. 34, pp 359-370, 1968.

Magnuson, A.H., "Acoustic Response in a Liquid Overlying a
Homogeneous Viscoelastic Half-Space", Journal of the Acoustical
Society of America Vol. 57, May 1975, pp 1017-1024.

Abramowitz, M. and Stegun, I.A., "Handbook of Mathemagical Functions”,
National Bureau of Standards, Applied Mathematics Series 55, June
1964, Chapter V.

Lamb, H., Hydrodynamics, Sixth Edition, Dover Publications, New York,
1932, pp 382-384.

21




APPENDIX
EXPRESSIONS FOR IN PHASE AND OUT OF PHASE COMPONENTS OF

SURFACE ELEVATION FOR UNIFORM PRESSURE DISTRIBUTION

The normalized in phase component of the surface elevation is given
as a(F,a) and the out of phase component as b(F,a). Each component
consists of four parts corresponding to the four poles Kl' Kz, K3 and K4.

One may write for a and b:

4
R
as= 2 a;
i=1
and
4
—
b= by
i=1

As a result of the discontinuous representation of the surface elvation
% (x,t), the superposition integration (8) must be performed in three
regions: 1) upstream (x'> 1/2), 2) under the pressure distribution (qu < 1/2)
and 3) downstream (x'< - 1/2).
The arguments for the exponential integral and exponential terms are

given in nondimensional form. First,6 thewavenumbers are normalized as follows:

Yi(a) = Ki/Ko, i=1,2,3,4.

The speed is expressed in terms of the Froude number F = c/(gﬂ)l/z, and
the normalized longitudinal distance as x' = 2x/%.
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For convenience, one may set

. mA 13 5
1 41-‘2 X = —
4F
Lz_xc-;l/Z Az 12
4F 8F
L3 o 1/2 ; X!
4F
L}
L4 - osilx +21/2)
4F

The components of the surface elevation are listed as follows:
Lo x ' > 1/2 (upstream), a <1
: [

3 T 2/ 1%a 1 S
i

f('Yle)

1 J
a =
2 21Y1+a -f (‘Y2L1) n f(Ysz)

1

(
al = 1 '
- i Y in Y
3 p v (E(Ly) - £(YL) + 4r sin (YyX) sin 7,G
L
1 [—f(YL)+f(YL)
a, % e (=
4w S g
-1
e g(y,L.) = g(y,L,) + 1In (Y.L ) - 1n (Y_L.)
1 2r / ie lll 172 Ll 12
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oY T TSI VRO wr— - -
r
1 ) )
e ‘9("2"1) q(vzx.z) + 1n(72x.1) In(y,L))
g
r
1 |
—— Y;(Ya!ol) = g(vyL,) + 1n(y L) - In(y,L) +
- 4n cos (yax) 8in (vac)
-
-1
i 19(741-1) - gly L) + In(y,L) - lnly,L)

fx' {f 1/2 (Under Pressure Distribution), a<l

2

1
- 1" + f(vlLa) + f(vlLl) 2y cos(Y.1L3)
-1 o+ f(Y2L3) + f(YZLl) -2n cos(Y2L3)L
2nY 1l+4a 1 J
1
. - co L
—-——-—ZW — T+ f(YaLa) + f(Y,aLl) + =27 s (v 3 1)
-1
-”—Ta—' {ﬂ’ + f(Y4L3) - f(Y4L1) 2n COS(Y4L3)
lr
-1
el =S ; = - 1
— <g(YlL1) g(yIL:,) + 1n (ylLl) 1n (yl 3)
+ 27 sin (ylLB)
1 1
P g(Yle) g(yzL3) + 1n (Yle) 1n (Y2L2)

+ 27 sgin W2L3),'
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oy
L i

ey — e e
-1
b, = g(YL)-9(1L)+1n(7L)-1n(YLl)
3 an/Te o 5 o ]
+ 27 Sin”ILl)r
1
= - + -
b4 {g(Y4L3) 9(Y4L1) ln(y4L3) ln(y4L4)
2nY 1-a )
- 27 sm(Y4L4):
3. x'< - 1/2 (Downstream), a<1l
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% = f(Y1L4) f(vlL3) + 47 sin (le) sin (YlG)
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a. Migration of K1 and K2

k=k'+ ik"

b. Migration of K3 and x4

Figure 2 - Migration of Poles in Complex Wavenumber Plane as
Frequency Parameter g Increases
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a. Path for 11
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b. Path for 12
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c. Path for 13, a < 1

d. Path for I,ra <1

A

Y ;
O\\j\\‘, r F
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e. Path for 13 and "IAfor a > 1

Figure 3 - Integration Paths in Complex Wavenumber Plane for
Dissipationless Liquid
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b. Out of phase component

Figure 7 - Normalized Wave Elevation for F=0.7 and «=0.5
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a. In phase compcnent

b. Out of phase component

Figure 8 - Normalized Wave Elevation for F=0.7 and «=0.95
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